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A Study of the Graetz Problems in Concentric-lube 
Continuous-Contact Countercurrent Separation 
Processes with Recycles at Both Ends 

HO-MING YEH, TUNG-WEN CHANG, and SHAU-WE1 TSAI 
DEPARTMENT OF CHEMICAL ENGINEERING 
NATIONAL CHENG KUNG UNIVERSITY 
TAINAN, TAIWAN, REPUBLIC OF CHINA 

Abstract 

A mathematical model for the concentric-tube square-off continuous-contact 
countercurrent separation process with recycles at both ends is developed to 
predict the concentrations of product. An analytical solution is obtained by 
means of the orthogonal expansion method. It has been found that only the 
positive eigenvalues for the enriching section and the negative eigenvalues for the 
stripping section are required during the calculation of the concentrations of 
product. Numerical results are presented for the separation of a benzene-n- 
heptane mixture in a concentric-tube thermal diffusion column. 

INTRODUCTION 

The heat and mass transfer problems commonly encountered in 
industrial practice occur in the conduit, around the particles, or between 
phases. The governing equations of the problem are usually simplified 
under suitable assumptions to obtain an analytical solution. The Graetz 
problem, in which the fully developed flow with negligible axial diffusion 
or conduction at steady state is assumed, has been well known for 
decades. In most cases the eigenfunction may be solved numerically, 
usually by assuming a power series expansion, by means of a Runge- 
Kutta integration scheme, or even by using well-known functions such as 
the confluent hypergeometric function. Many investigators have recently 
extended the classical Graetz problem with boundary conditions of the 
first kind to different geometries and to a variety of boundary conditions. 
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404 YEH, CHANG, AND TSAl 

Typical examples are the consideration of axial conduction or diffusion, 
the heat generation, and the effects of chemical reaction on heat and 
mass transfers ( I ,  4, 5, 7). Still, all the velocity distributions concerned did 
not change sign over the interval in question. 

Many separation processes in chemical engineering have been de- 
veloped in countercurrent operation with internal or external refluxes at 
both ends. Typical examples are the distillation or extraction in rectifying 
column, continuous membrane separation, thermal diffusion, counter- 
current centrifuges, and mass diffusion. For the equilibrium-stage 
operation, the McCabe-Thiele, Ponchon-Savarit, or Sore1 method is 
adequate to tackle the problem. For the diffusion-rate operation, there is 
still lack of a thorough analysis. The difficulties arise not only in the fact 
that the velocity profile changes sign, but also the concentrations at both 
ends cannot be specified a priori. 

For homogeneous mixtures the separation may be reached by the use 
of external fields, such as pressure and temperature. Therefore, it is the 
purpose of this work to extend the theory of the Graetz problem in a 
concentric-tube square-off continuous-contact countercurrent separation 
process with refluxes at both ends and with uniformly generalized 
applied fields. We hope that the present formulation will bring a new 
beginning to a variety of heat OT mass transfer problems under the 
influence of recycling. 

COLUMN THEORY 

Consider an ideal concentric-tube square-off separation column with 
the feed introduced at some intermediate position of the column. The 
column is composed of enriching and stripping sections. The fully 
developed fluids flow countercurrently with internal or external refluxes 
at both ends, and the products are withdrawn continuously from both 
ends. The coordinate is located as shown in Fig. 1, and the lengths of both 
sections are L, and L,, respectively. 

The theory is based on the following assumptions: 

(1) Physical properties are assumed constant. 
(2) Purely laminar flow of the mixture exists in both sections. 

(3) Ends effects and axial diffusion are negligible. 
(4) No bulk flows exist in the radial direction. 
(5) External fields, such as temperature and electrical fields, as shown 

by Crosser et al. (3), are applied uniformly in the radial direction to 

Therefore, neither radial nor axial mixing may occur. 
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COUNTERCURRENT SEPARATION PROCESSES 405 
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FIG. 1. Schematic diagram of a concentric-tube square-off continuous-contact counter- 
current separation process with refluxes at both ends. 

cause one component to concentrate at the warm side and at the 
top of the column. 

With this set of assumptions, the mass flux in the radial direction (say, 
for the enriching section) may be expressed as 
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YEH, CHANG, AND TSAI 406 

in which h(r) is due to the effects of the applied fields. The mass balance 
for the enriching section is 

Ve(r) ~ = - - r - - rh( r )  
dz r d r  

The boundary conditions for solving Eq. (2) are 

C,  = C,, atz = L, (3)  

dC, ldr  = h ( r ) ,  at r = kR,  R ( 4 9  5 )  

Equations (4) and (5) can be written because of the existence of 
impermeable walls. Since it is imperative to have a mixing zone at the 
end due to reflux, we may impose Eq. (3) on the boundary. Until now, C, 
is unspecified. 

If the following dimensionless groups are introduced: 

Eqs. (2) to (5) become 

For the stripping section, all the equations have the same forms as 
those in the enriching section except that the subscript e and Eq. (8) are 
replaced by s and Eq. (1 l), respectively: 

Of course, c b  is also not specified at present. 

SOLUTION OF CONCENTRATIONS OF PRODUCT 

In order to reduce the governing equations to the Sturm-Liouville form, 
we may assume the concentration profile (say, for the enriching section) 
to be 
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COUNTERCURRENT SEPARATION PROCESSES 407 

where S , ,  is the expansion coefficient associated with the eigenvalue &,m. 

Substituting Eq. (12) into Eqs. (7), (9), and (10) results in 

where the prime on Fe,m(q) denotes differentiation with respect to q. The 
form of Eq. (13) chosen will later be convenient for the derivation of 
expansion coefficients. 

Inspection of Eqs. (14) to (16) shows that they are a special case of the 
Sturm-Liouville problem for which the velocity profile changes sign over 
the interval in question. Hence, there may exist a set of real eigenvalues 
which have the limit points +a to -a. Many methods in the literature 
have been used to find the eigenvalues and eigenfunctions. For example, 
one may assume the eigenfunction to be in a power series expansion: 

m 

In general, the convergence of the summation in Eq. (17) is slow, 
especially as the absolute value of the eigenvalue increases. However, this 
method is still feasible when only few terms of the eigenfunction in the 
summation of Eq. (12) are needed. Typical examples are separation 
processes with a large ratio of column length to column thickness. When 
more eigenfunction terms are needed, they may be expressed in terms of 
well-known functions, such as the confluent hypergeometric function, to 
speed the calculation. However, because the power of q in the velocity 
distribution is more than 2, the merit of such a well-known function is 
lost. For a generalized velocity distribution, the Runge-Kutta integration 
scheme may be more appropriate. 

For the stripping section, all the equations have the same forms as 
those in the enriching section except that the subscript e is replaced by s, 
and Eq. (13) by 
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408 YEH, CHANG, AND TSAl 

Since the velocity distribution in the stripping section changes sign too, 
both positive and negative eigenvalues may exist. 

It is easy to find the orthogonality conditions for both sections with the 
weight functions qU,(q) and qUs(q), respectively. Therefore, applying 
Eqs. (8), (ll), and (12), and integrating from q = k to 1, yields 

For the case with an eigenvalue of zero in the enriching section, i.e., 
hpD = 0, we obtain Fep = 1 = GeI, from Eqs. (14) to (17). Hence, from Eq. 
(1917 I,' [ li(q )dq] q ue(q )dq 

(que(q)dq 
Se.0 = Ct - (21) 

Similarly, for the stripping section with a, = 0, 

1 [ p(m] 9Us(rl)drl 

I,'q US(ll)drl 
s,o = Cb - (22) 

When he,m # 0 and 
Eqs. (23) and (24) after using standard simplifying techniques. 

# 0, Eqs. (19) and (20) can be further reduced to 
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COUNTERCURRENT SEPARATION PROCESSES 409 

It was surprising to find, during the derivation of the above two 
equations, that the terms associated with C, and C, in Eqs. (19) and (20) 
vanished due to the boundary conditions at the walls. Consequently, the 
concentration distributions in both sections may be expressed as 

m 

ce(q,<) = s e , o  + 1 s e , m F e , m ( q ) G e , m ( < )  + />(q)dq (25) 
k m = 1  

Define the difference of average concentrations for both sections by 

where Ci is the average concentration at the feed position in the column. 
6, and 6, are the positions where Ue(q) and Us(q), respectively, begin to 
change sign over the interval in question. The reasons why we use the 
definitions of Eqs. (27) and (28) are explained in the Appendix. 
Combining the above two equations to eliminate Ci and making use of 
Eqs. (25) and (26) give the degree of separation for the whole column: 
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41 0 YEH, CHANG, AND TSAt 

2 

A material balance around the whole column gives 

in which 0, and b b  are the mass flow rates of product at both ends. 
Combining Eqs. (29) and (30) results in 

Consequently, once all the eigenvalues and associated expansion coeffi- 
cients are found, we may evaluate C, and cb from Eqs. (29), (31), and (32). 
It is easy to find from Eqs. (29) and (30) that the eigenvalues of zero have 
no influence on the determination of C, and cb. Moreover, in order to 
make the terms on the right-hand sides of Eqs. (27) and (28) convergent, 
the negative eigenvalues for 
should be omitted. 

and the positive eigenvalues for 

COMPUTATION ASPECT 

For the purpose of illustration, we will consider the separation of a 
benzene and n-heptane mixture in a concentric-tube thennogravitational 
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COUNTERCURRENT SEPARATION PROCESSES 41 1 

thermal diffusiori column, as shown in Fig. 2. The mass flux due to 
thermal and ordinary diffusions at any point in the enriching section 
may be expressed as (6, 8) 

[: aC,(l - C,) dT 
dr 

J = p D  2- 
T r. e ( 3 3 )  

where a is the thermal diffusion constant and is defined as the 
reference temperature of the mixture in the column under batch 
operation. 

We may furthermore assume: 

(1) The temperature distribution is determined by conduction in the 
radial direction only. This is due to the small space between the 
tube surfaces of the column. 

0 

', 20 

FIG. 2. Schematic diagram of a continuous-flow concentric-tube thermal diffusion 
column. 
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41 2 YEH. CHANG, AND TSAl 

(2) The change of concentration in the whole column is in the range of 
0.3 to 0.7. Hence, the quadratic form of concentration C,(1 - C,) 
may be regarded as constant and taken approximately as 0.25. 

(3) The feed is introduced at the center of the column and the products 
are withdrawn from both ends at equal flow rates, i.e., L, = L,T = L 
and 0, = ob = 0. 

(4) The convective flows occur in the axial direction only, and the 
velocity profiles can be obtained from the equations of motion and 
energy. 

Accordingly, we obtain (12, 14) 

aC,(1 - C,)R dT ~ aAT - 
i= dr - 4F(lnk)q f ( q )  = 

T = T  I -m-(g) 
(34) 

(35) 

(36) 
-(1 - 4k2 + 3k4 - 4k4 lnk)(AT) 

4[(1 - k4) Ink + ( 1  - k2)’] @ =  

We may also obtain 6, by letting U,(q) equal to zero. For the stripping 
section, Eqs. (34) to (38) are still valid except that the subscript e is 
replaced by s, and 0 in Eq. (38) is replaced by -0. Consequently, Eqs. (23) 
and (24) reduce to 
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COUNTERCURRENT SEPARATION PROCESSES 413 

Let us consider a numerical example for the separation of the 
benzene-n-heptane mixture. Some equipment parameters and physical 
properties are 

R = 1.6 cm, L = 60 cm, k = 0.96, T I  = 288.5 K, T2 = 322.5 K, 

exp (1072/F) gcm-ls-’, p = 4.314 X 

F) g/cm3, D = [2.47 + 4.65 X 10-2(F - 298)] X 

a = 1.2, g = 980 cm/s2, C, = 0.5, p = 1.34 
X 
X (550 .5  - F)-0.641 g cm-3 K-’ , p = 5.788(0.181 - 1.635 
X cm2/s 

Using these values, the first two positive eigenvalues for the enriching 
section and the first two negative eigenvalues for the stripping section 
have been calculated by Runge-Kutta integration method and are 
presented in Table 1 with the product rate 0 as a parameter. The degree of 
separation is also evaluated and presented in Table 2 with 0 as a 
parameter. For comparison, we have also calculated the degree of 
separation from the equation derived by Furry et al. (6), i.e., 

A - g { l - e x p ( + ) ]  - 20 

in which the curvature effect may be neglected due to the value of k 
approaching unity (k = 0.96). The transport constants in Eq. (41) are 
defined as 

2nR4appg(AT)’k(l - k)3 H =  
6! 

(43) 
2nR8pZpg2(AT)’k( 1 - k)7 K =  

9!Dp2 

The results are shown in Table 2. 

DISCUSSION AND CONCLUSIONS 

On the basis of this study, and discussions, some conclusions have 
been reached. 

(1) The equation of separation of the Graetz problem in a concentric- 
tube square-off continuous-contact countercurrent separation pro- 
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414 YEH, CHANG, AND TSAl 

TABLE 
Eigenvalue and Related Expansion Coefficients for 

b, m he, m 

0.5 1 
2 

1 .0 1 
2 

3.0 1 
2 

5.0 1 
2 

1.76142 
1.7 1738(2) 
3.32067 
1.9 1579(*) 
1.23783(') 
3.42734(2) 
2.83596(') 
6.71240(2) 

7.95747(-') 
-9.91 557(-3) 

- S.86416(-3) 

- 1 .8438S(-4) 
5.33745(-2) 

-5.25 163(-7) 

6.51299(-') 

2.25609(-l) 

9.58394 

1.64085(') 

3.81979(') 

5.25581(') 

-9.98764(') 

- 1.034 15(*) 

- 1.23320(') 

- 1 .49387(2) 

1.08623 

2.05578 

8.09614 

2.44430(') 

-2.62590(2) 

-4.09495(') 

-8.44491(3) 

- 1.79476(@ 

"The numerical values in parentheses represent powers of 10, eg., 7.95747(-') means 7.95747 X 
10-1. 

cess with refluxes at both ends has been derived by using the 
orthogonal expansion technique. In order to make sure of con- 
vergence, only the positive set of eigenvalues for the enriching 
section and the negative set of eigenvalues for the stripping section 
are necessary during the calculation of the concentrations of 
product. This behavior is quite different compared with heat and 
mass transfer in countercurrent flow without reflux. 

(2) For illustration, we have given an example for the separation of a 
benzene-n-heptane mixture in the concentric-tube thermal diffu- 
sional column. The first two eigenvalues and associated expansion 
coefficients for both sections have been calculated by the Runge- 
Kutta integration method and are presented in Table 1 with the 
mass flow rate 0 as a parameter. 

(3) The degree of separation based on the mathematical model 
formulated here are presented in Table 2 with 0 as a parameter. We 
have also calculated the degree of separation from the equation 
derived by Furry et al. It is shown that the agreement is quite good 
for a small mass flow rate. However, as 0 increases, some 
modifications of H and K in Eq. (39) should be made to take into 
account the effect of the mass flow rate. This behavior is quite 
evident, since Furry et al. have transformed the partial differential 
equations, which describe the concentration field, into ordinary 
differential equations giving the axial concentration gradient. As 
the mass flow rate increases, the variation of the axial component 
of the concentration gradient in the radial direction is not small 
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COUNTERCURRENT SEPARATION PROCESSES 41 5 

Both Sections with (T as a Parameter (C’ = 0.5Y 

- 1.75836 
-1.67516(2) 
-3.55825 
- 1 .90062(2) 
- 1.22346(’) 
- 3.3 1797(’) 
-2.77030(’) 
-6.4388 I(*) 

1.25637 
-9.22232“) 

1.58280 
- 1.675 17(’) 

4.38511 
-4.45269(3) 

1.79794(” 
- 1.28259@) 

-1.20339(‘) 
- Y.05632(3) 
-2.74667(’) 
- 1 .71325‘4’ 
- 1.67 l43(*) 
-5.40287(” 
-9.41310(2’ 
- 1.88501(8’ 

- 1.08504 
2.37583(*) 

3 .Y 295 3(*) 

6.89462(3’ 

1.20972(6) 

-2.20357 

- 8.0 14 13 

-2.36187(’) 

-9.1 1755(-’) 

-4.0032Y‘-2) 

-6.71 169(-” 

- 1.23041(-3) 

2.16521(-’) 

1.14825(-’) 

3.72736(-‘) 

I .09445(-9) 

enough compared to the variation of the other relevant parameter 
in radial direction to permit transformation. 

(4) Several improved thermal diffusion columns (2, 8-11, 13-15) have 
recently been developed to increase separation efficiency. The 
present mathematical formulas can also be used in those columns 
to obtain a more precise prediction of the product concentration. 

(5) For the special case that the feed is introduced from the bottom of 
the column, the stripping section is missing. Hence, only the terms 
associated with the enriching section are retained. One may also 
follow the same procedure to obtain C,, C,, and A, once all the 
expansion coefficients associated with hem are found. For the same 
reason, if the feed is introduced from the top of the column, one 
may obtain the solutions once all the expansion coefficients 
associated with are found. 

TABLE 2 
Comparison of the Degree of Separation with That from Eq. (41) with B as a parameter 

(Cj = 0.5) 

0.5 
1.0 
3.0 
5.0 

16.99 
10.34 
3.60 
2.29 

16.99 
9.95 
3.42 
2.05 

0.00 
3.77 
5.00 

10.48 
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41 6 YEH, CHANG, AND TSAl 

(6) During the derivation of this work, some assumptions have been 
made, such as laminar flow for the mixture, negligible end effects 
and axial diffusion, etc. Therefore, the influence of the neglected 
effects, such as turbulence, dependent fluid properties, and a 
variety of boundary conditions, on the results will be the subject of 
further studies. 

APPENDIX 

If the range of integration for Eqs. (27) and (28) is from k to 1 in order to 
define the difference of concentrations in each section, we will obtain 
conflicting results, i.e., 

This is due to the fact that velocity distributions change sign in two 
intervals, k to 6, (or 6,) and 6, (or 6,) to 1 .  Consequently, we may define the 
difference of bulk concentrations in the enriching section by 
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41 7 

(A21 

Substituting Eq. (Al) into the above equation results in Eq. (27). For the 
stripping section, we may follow the same routine to obtain Eq. (28). 

SYMBOLS 

weight fraction of Component 1 in binary mixture 
C in feed stream and at the feed position of the column, 
respectively 
ordinary diffusion coefficient in binary mixtures 
coefficient in the eigenfunction F,,, 
eigenfunction associated with eigenvalue A,,, 
dimensionless function defined in Eq. (6) 
function associated with eigenvalue A,,, in the orthogonal 
expansion method 
gravitational acceleration 
transport constant defined by Eq. (42) 
function defined in Eq. (1) 
mass flux in the radial direction due to ordinary diffusion and 
external applied field 
transport constant defined by Eq. (43) 
ratio of the outer radius of the inner tube to the inner radius of 
the outer tube 
column length of each section 
inner radius of outer tube 
coordinate axis in the radial direction 
expansion coefficient associated with eigenvalue h, 
reference temperature 
temperatures of cold wall and hot wall, respectively, in the 
concentric-tube thermal diffusion column 
dimensionless velocity defined in Eq. (6) 
velocity distribution 
coordinate axis in the axial direction 
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YEH, CHANG, AND TSAl 418 

Greek Letters 

a 
P 
A, A,  

thermal diffusion constant in binary mixtures 
defined as - (dp /d r )  evaluated at T 
degree of separation defined by C, - C,, and evaluated by Eqs. 
(29) and (41), respectively 
defined by T,  - T I  
position at which the velocity distribution changes sign 
dimensionless coordinate defined in Eq. (6) 
dimensionless coordinate defined in Eq. (6) 
eigenvalue 
viscosity of the mixture 
density of the mixture 
mass flow rate of product at each section 
parameter defined in Eq. (36) 
parameter defined in Eq. (38) for the enriching section 

Subscripts 

b 
e for the enriching section 
S for the stripping section 
t at the top of the column 

at the bottom of the column 
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