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A Study of the Graetz Problems in Concentric-Tube
Continuous-Contact Countercurrent Separation
Processes with Recycles at Both Ends

HO-MING YEH, TUNG-WEN CHANG, and SHAU-WEI TSAI

DEPARTMENT OF CHEMICAL ENGINEERING
NATIONAL CHENG KUNG UNIVERSITY
TAINAN, TAIWAN, REPUBLIC OF CHINA

Abstract

A mathematical model for the concentric-tube square-off continuous-contact
countercurrent separation process with recycles at both ends is developed to
predict the concentrations of product. An analytical solution is obtained by
means of the orthogonal expansion method. It has been found that only the
positive eigenvalues for the enriching section and the negative eigenvalues for the
stripping section are required during the calculation of the concentrations of
product. Numerical results are presented for the separation of a benzene-n-
heptane mixture in a concentric-tube thermal diffusion column.

INTRODUCTION

The heat and mass transfer problems commonly encountered in
industrial practice occur in the conduit, around the particles, or between
phases. The governing equations of the problem are usually simplified
under suitable assumptions to obtain an analytical solution. The Graetz
problem, in which the fully developed flow with negligible axial diffusion
or conduction at steady state is assumed, has been well known for
decades. In most cases the eigenfunction may be solved numerically,
usually by assuming a power series expansion, by means of a Runge-
Kutta integration scheme, or even by using well-known functions such as
the confluent hypergeometric function. Many investigators have recently
extended the classical Graetz problem with boundary conditions of the
first kind to different geometries and to a variety of boundary conditions.
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Typical examples are the consideration of axial conduction or diffusion,
the heat generation, and the effects of chemical reaction on heat and
mass transfers (I, 4, 5, 7). Still, all the velocity distributions concerned did
not change sign over the interval in question.

Many separation processes in chemical engineering have been de-
veloped in countercurrent operation with internal or external refluxes at
both ends. Typical examples are the distillation or extraction in rectifying
column, continuous membrane separation, thermal diffusion, counter-
current centrifuges, and mass diffusion. For the equilibrium-stage
operation, the McCabe-Thiele, Ponchon-Savarit, or Sorel method is
adequate to tackle the problem. For the diffusion-rate operation, there is
still lack of a thorough analysis. The difficulties arise not only in the fact
that the velocity profile changes sign, but also the concentrations at both
ends cannot be specified a priori.

For homogeneous mixtures the separation may be reached by the use
of external fields, such as pressure and temperature. Therefore, it is the
purpose of this work to extend the theory of the Graetz problem in a
concentric-tube square-off continuous-contact countercurrent separation
process with refluxes at both ends and with uniformly generalized
applied fields. We hope that the present formulation will bring a new
beginning to a variety of heat or mass transfer problems under the
influence of recycling.

COLUMN THEORY

Consider an ideal concentric-tube square-off separation column with
the feed introduced at some intermediate position of the column. The
column is composed of enriching and stripping sections. The fully
developed fluids flow countercurrently with internal or external refluxes
at both ends, and the products are withdrawn continuously from both
ends. The coordinate is located as shown in Fig. 1, and the lengths of both
sections are L, and L, respectively.

The theory is based on the following assumptions:

(1) Physical properties are assumed constant.

(2) Purely laminar flow of the mixture exists in both sections.
Therefore, neither radial nor axial mixing may occur.

(3) Ends effects and axial diffusion are negligible.

(4) No bulk flows exist in the radial direction.

(5) External fields, such as temperature and electrical fields, as shown
by Crosser et al. (3), are applied uniformly in the radial direction to
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FiG. 1. Schematic diagram of a concentric-tube square-off continuous-contact counter-
current separation process with refluxes at both ends.

cause one component to concentrate at the warm side and at the
top of the column.

With this set of assumptions, the mass flux in the radial direction (say,
for the enriching section) may be expressed as

J,= pD [aﬁ - h(r)] (1)
or
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in which k() is due to the effects of the applied fields. The mass balance
for the enriching section is

V.(r) aac" = D i {r a—c‘i - rh(r)} 2)
r

z or

The boundary conditions for solving Eq. (2) are
C,=C, atz = L, (3)
0C./0r = h(r), atr = kR, R 4, 5)
Equations (4) and (5) can be written because of the existence of
impermeable walls. Since it is imperative to have a mixing zone at the
end due to reflux, we may impose Eq. (3) on the boundary. Until now, C,

is unspecified.
If the following dimensionless groups are introduced:

§=2z/L, n=r/R,U{m) = RV,(r)/L.D, f(n) = Rh(r) (6)

Eqgs. (2) to (5) become

aCc, 1 0 oC
UMm)—=-— {n £ - nf(n)} (7N

0f non on
C.=C, at{=1 (8)
8C,/on = f(n), atn=4k,1 (9, 10)

For the stripping section, all the equations have the same forms as
those in the enriching section except that the subscript e and Eq. (8) are
replaced by s and Eq. (11), respectively:

C,=C,, atl{ = -1 (11)

Of course, C, is also not specified at present.

SOLUTION OF CONCENTRATIONS OF PRODUCT

In order to reduce the governing equations to the Sturm-Liouville form,
we may assume the concentration profile (say, for the enriching section)
to be
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c.(n.0) = fose,mFe,m(n)Ge,m(cH f "fm)dn (12)
”= k

where S, ,, is the expansion coefficient associated with the eigenvalue A,
Substituting Eq. (12) into Egs. (7), (9), and (10) results in

Gem(§) = exp [~A, (1 = 0)] (13)
MFen(M]’ = AemnUdM)Fep(n) = 0 (14)
F,.(k) =0 (15)
F,.(1)=0 (16)

where the prime on F,,(n) denotes differentiation with respect to n. The
form of Eq. (13) chosen will later be convenient for the derivation of
expansion coefficients.

Inspection of Eqgs. (14) to (16) shows that they are a special case of the
Sturm-Liouvilie problem for which the velocity profile changes sign over
the interval in question. Hence, there may exist a set of real eigenvalues
which have the limit points -+ to —o. Many methods in the literature
have been used to find the eigenvalues and eigenfunctions. For example,
one may assume the eigenfunction to be in a power series expansion:

Fop(M) = 2 dmen = 1), With de = 1 17

In general, the convergence of the summation in Eq. (17) is slow,
especially as the absolute value of the eigenvalue increases. However, this
method is still feasible when only few terms of the eigenfunction in the
summation of Eq. (12) are needed. Typical examples are separation
processes with a large ratio of column length to column thickness. When
more eigenfunction terms are needed, they may be expressed in terms of
well-known functions, such as the confluent hypergeometric function, to
speed the calculation. However, because the power of n in the velocity
distribution is more than 2, the merit of such a well-known function is
lost. For a generalized velocity distribution, the Runge-Kutta integration
scheme may be more appropriate.

For the stripping section, all the equations have the same forms as
those in the enriching section except that the subscript e is replaced by s,
and Eq. (13) by

G,.n(8) = exp [A; (1 + Q)] (18)
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Since the velocity distribution in the stripping section changes sign too,
both positive and negative eigenvalues may exist.

It is easy to find the orthogonality conditions for both sections with the
weight functions nU,(n) and nU(n), respectively. Therefore, applying
Egs. (8), (11), and (12), and integrating from n = k to 1, yields

k

l_ M 1
f C - J’f(n)dn]nUe(n)Fe.m(n)dn = Se,mf NU.(MF.(n)dn  (19)
kL Kk

k

[ 1
f ILCb - f kn)dn]nUs(n)Fs,m(n)dn = S;m f WMFZ(wdn  (20)
k k

For the case with an eigenvalue of zero in the enriching section, ie,
Ao = 0, we obtain F,q = 1 = G, from Eqgs. (14) to (17). Hence, from Eq.

19),
1 n
j [ j f(n)dn]nUe(n)dn
Seo = Co— =7 1)
f nU(m)dn
k
Similarly, for the stripping section with A, = 0,
1 n
f [ f f(n)dn]nUs(n)dn
S,o=Cp— L=t (22)

1
f nU,(n)dn
k

When A,,, # 0 and A,,, # 0, Eqs. (19) and (20) can be further reduced to
Eas. (23) and (24) after using standard simplifying techniques.

- f nFL(mAmdn
_ k
S = o oK) OF (RO ) .
_ f nF! ()
s, = . (24)

KA s m(K)Y(OF 5y (K)/ O )
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It was surprising to find, during the derivation of the above two
equations, that the terms associated with C, and C, in Egs. (19) and (20)
vanished due to the boundary conditions at the walls. Consequently, the
concentration distributions in both sections may be expressed as

Cin,) = Sep + Zl SemFem(M)G.m(€) + fnf(n)dn (25)
m= k

CMQ) = So + 2 SupFon(M)Gon(®) + f fmdn - (26)

Define the difference of average concentrations for both sections by

8,
Ct - Ci = {j nUe(n)[Ce(nal) - CE(T],O)]dn}
k

5, -1 1 -1
[f nUe(n)dn] —[f nUe(n)dn]
k 5,

2

(27)

8¢
Ci - Cb = {f TlUs(ﬂ)[Cs(ﬂ,O) - Cs(ns_l)]dn}

k

8, -1 -1
U nUs(n)dn] —Uans(n)dn] _
k 8

2

(28)

where C, is the average concentration at the feed position in the column.
8. and §; are the positions where U, (n) and U,(n), respectively, begin to
change sign over the interval in question. The reasons why we use the
definitions of Egs. (27) and (28) are explained in the Appendix.
Combining the above two equations to eliminate C; and making use of
Egs. (25) and (26) give the degree of separation for the whole column:
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A=C-Cp= Y Senden®Ill~ exp (“h,)

m=1 }"e,m

5, -1 1 -1
U nUe(n)dn] ~[f nUe(n)dn]
2

{i S, mF'n(8,)[exp (A, ) = 1] }

m=1 }"s,m

5, -1 1 -1
[ f nUs(n)dn] - [ f nUs(n)dn]
{ k 8 } (29)
2
A material balance around the whole column gives
(0, + 6,)C; = 0,C, + 6,C, (30)

in which o, and o, are the mass flow rates of product at both ends.
Combining Egs. (29) and (30) results in

A

C = Cf+ m 3D
L A(c /o)
Co= Gy mies (32)

Consequently, once all the eigenvalues and associated expansion coeffi-
cients are found, we may evaluate C, and C, from Egs. (29), (31), and (32).
It is easy to find from Egs. (29) and (30) that the eigenvalues of zero have
no influence on the determination of C, and C,. Moreover, in order to
make the terms on the right-hand sides of Egs. (27) and (28) convergent,
the negative eigenvalues for A,, and the positive eigenvalues for A,
should be omitted.

COMPUTATION ASPECT

For the purpose of illustration, we will consider the separation of a
benzene and #-heptane mixture in a concentric-tube thermogravitational
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thermal diffusion column, as shown in Fig. 2. The mass flux due to
thermal and ordinary diffusions at any point in the enriching section
may be expressed as (6, 8)

= pD[é_C_e _oeC(1-C) _dl:l (33)

J -
dar T dr

re

where a is the thermal diffusion constant and T is defined as the
reference temperature of the mixture in the column under batch
operation.

We may furthermore assume:

(1) The temperature distribution is determined by conduction in the
radial direction only. This is due to the small space between the
tube surfaces of the column.

— e N
:] -
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Q
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Q

FiG. 2. Schematic diagram of a continuous-flow concentric-tube thermal diffusion
column.
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(2) The change of concentration in the whole column is in the range of
0.3 to 0.7. Hence, the quadratic form of concentration C(1 — C,)
may be regarded as constant and taken approximately as 0.25.

(3) The feed is introduced at the center of the column and the products
are withdrawn from both ends at equal flow rates, i.e, L, =L =L
and 6, = 6, = 0.

(4) The convective flows occur in the axial direction only, and the
velocity profiles can be obtained from the equations of motion and
energy.

Accordingly, we obtain (/2, 14)

aC(1 -~ C)R dT _ aAT

Sfn) = 7 & = Ao (34)
AT
T=T—-0-|— 35
1= 0 an> (35)
_ —(1 — 4Kk + 3k* — 4k* In k)(AT)
T T - Ink ¥ (I = k)] (36)
2 _— 4 2
U my = YA PR {(«p " we)<n2 - & =Dl 1)
LD LDy Ink
- Léﬂ(k2 Inn—-n’ln k)} 37
41Ink
2uoc Ink (38)

@ = onR*Bg[(1 - k) Ink + (1 — kD)7

We may also obtain §, by letting U,(n) equal to zero. For the stripping
section, Eqgs. (34) to (38) are still valid except that the subscript e is
replaced by s, and ¢ in Eq. (38) is replaced by —a. Consequently, Egs. (23)
and (24) reduce to

¢ - ~a(AT)[1 = F,, (k)]
" AT (0 Kk F (K )OF, (k)N )

(39)

¢ - —9AD[ = F, k)
"~ AF(n kYA, oF, o()F ,(k)/ON, )

(40)
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Let us consider a numerical example for the separation of the
benzene-n-heptane mixture. Some equipment parameters and physical
properties are

R=16cm,L=60cm k=0967T, =2885K,T,=3225K,
a=12,g=980cm/s>C,=0.5,u= 134
X 10~*exp (1072/T) gem ™' s™', B = 4.314 X 1072
X (550.5 — T) " gcm™ K~', p = 5.788(0.181 — 1.635
X 1074 T) g/em?, D = [2.47 + 4.65 X 107%(T — 298)] X 105 cm?/s

Using these values, the first two positive eigenvalues for the enriching
section and the first two negative eigenvalues for the stripping section
have been calculated by Runge-Kutta integration method and are
presented in Table 1 with the product rate ¢ as a parameter. The degree of
separation is also evaluated and presented in Table 2 with ¢ as a
parameter. For comparison, we have also calculated the degree of
separation from the equation derived by Furry et al. (6), ie.,

A1=%{l—exp<;;£>} (41)

in which the curvature effect may be neglected due to the value of k
approaching unity (k = 0.96). The transport constants in Eq. (41) are
defined as

_ 2nRaBpg(ATYk(1 — k)?

H =
6!'uT

(42)

_ 2nR%B2 g (AT)*k (1 — kY

K
9!Dp?

(43)

The results are shown in Table 2.

DISCUSSION AND CONCLUSIONS

On the basis of this study, and discussions, some conclusions have
been reached.

(1) The equation of separation of the Graetz problem in a concentric-
tube square-off continuous-contact countercurrent separation pro-
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TABLE
Eigenvalue and Related Expansion Coefficients for
o OF; k)
(g/min) m }‘f.m Fe.m(k) Fé,m(se) a}\re,m
0.5 1 1.76142 7.95747¢-1 9.58394 1.08623
2 1.71738 -991557(-3 —9.98764(D —2.625902)
1.0 1 3.32067 6.51299(-1 1.64085(1) 205578
2 191579 —5.86416(7% —1.03415@ —4,094952)
3.0 1 1.23783( 2.25609¢1 3.81979(1 8.09614
2 3427342 —1.84385(-4 ~1.2332012 —8.444919
5.0 1 2.83596(1) 5337452 5255811 2.44430D
2 6.712409 —5.25163¢7 —1.493872 ~1.79476

9The numerical values in parentheses represent powers of 10, e.g., 7.95747C1 means 7.95747 X

107

?)

3)

cess with refluxes at both ends has been derived by using the
orthogonal expansion technique. In order to make sure of con-
vergence, only the positive set of eigenvalues for the enriching
section and the negative set of eigenvalues for the stripping section
are necessary during the calculation of the concentrations of
product. This behavior is quite different compared with heat and
mass transfer in countercurrent flow without reflux.

For illustration, we have given an example for the separation of a
benzene-n-heptane mixiure in the concentric-tube thermal diffu-
sional column. The first two eigenvalues and associated expansion
coefficients for both sections have been calculated by the Runge-
Kutta integration method and are presented in Table 1 with the
mass flow rate ¢ as a parameter.

The degree of separation based on the mathematical model
formulated here are presented in Table 2 with o as a parameter. We
have also calculated the degree of separation from the equation
derived by Furry et al. It is shown that the agreement is quite good
for a small mass flow rate. However, as ¢ increases, some
modifications of H and K in Eq. (39) should be made to take into
account the effect of the mass flow rate. This behavior is quite
evident, since Furry et al. have transformed the partial differential
equations, which describe the concentration field, into ordinary
differential equations giving the axial concentration gradient. As
the mass flow rate increases, the variation of the axial component
of the concentration gradient in the radial direction is not small
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Both Sections with ¢ as a Parameter (Cf = 0.57

OF; (k)

Se.m }"s,m Fs,m(k) F;,M(SS) a }\'S. m SS, m
1.14366D -1.75836 1.25637 —1.20339(1 —1.08504 -9.117552
19253573 ~1.675169 -922232(H -9.056320) 2.37583 2.165219)
6.68585(=2) —3.55825 1.58280 —2.746671) —2.20357 —4.00329(-2
1863913 -1.90062 -1.675172 -1.71325@ 3.92953@ 1.14825(-5
2919792} —-1.22346(0 438511 -167143® ~8.01413 —6.71169¢
1.59767¢3 -331797%  ~4.45269% —5.40287%) 6.89462¢) 3.72736(-9)
2.18110C°2 —2.77030() 1.797940 -941310@ ~2.361870 —1.23041%
13474403 —6.43881 ~—128259(0) ~1.88501¢® 1.20972(6) 10944509

enough compared to the variation of the other relevant parameter
in radial direction to permit transformation.

(4) Several improved thermal diffusion columns (2, 8-11, 13-15) have
recently been developed to increase separation efficiency. The
present mathematical formulas can also be used in those columns
to obtain a more precise prediction of the product concentration.

(5) For the special case that the feed is introduced from the bottom of
the column, the stripping section is missing. Hence, only the terms
associated with the enriching section are retained. One may also
follow the same procedure to obtain C, C,, and A, once all the
expansion coefficients associated with A, are found. For the same
reason, if the feed is introduced from the top of the column, one
may obtain the solutions once all the expansion coefficients
associated with A, are found.

TABLE 2
Comparison of the Degree of Separation with That from Eq. (41) with o as a parameter
Cr=105)
A - Al
ag A AI A
(g/min) (%) (%) (%)
0.5 16.99 16.99 0.00
1.0 10.34 9.95 31
30 3.60 3.42 5.00

50 229 2.05 10.48
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(6) During the derivation of this work, some assumptions have been
made, such as laminar flow for the mixture, negligible end effects
and axial diffusion, etc. Therefore, the influence of the neglected
effects, such as turbulence, dependent fluid properties, and a
variety of boundary conditions, on the results will be the subject of
further studies.

APPENDIX

If the range of integration for Eqs. (27) and (28) is from & to 1 in order to
define the difference of concentrations in each section, we will obtain
conflicting results, i.e.,

f nU()[C.n,1) = C(n,0)]dn
C,—-C ==

f nU.(n)dn

k

i 1
2. Senll = exp (=Ac,)] f U M)Fen()dn

f nU.(m)dn

k

0=C —C, (A1)

This is due to the fact that velocity distributions change sign in two
intervals, k to 8, (or 8,) and §, (or &) to 1. Consequently, we may define the
difference of bulk concentrations in the enriching section by

69
NUM)IC.(m,1) = Cn,0)]dn

.l

SE
J nU.(m)dn
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1
f nU.(m)[Cn,1) — Cn,0)]dn
+ 22 (A2)

f nU.(m)dn

[4

Substituting Eq. (Al) into the above equation results in Eq. (27). For the
stripping section, we may follow the same routine to obtain Eq. (28).

SYMBOLS

C weight fraction of Component 1 in binary mixture

C. G C in feed stream and at the feed position of the column,
respectively

ordinary diffusion coefficient in binary mixtures

i coefficient in the eigenfunction F,,

eigenfunction associated with eigenvalue A,

dimensionless function defined in Eq. (6)

function associated with eigenvalue A, in the orthogonal
expansion method

gravitational acceleration

transport constant defined by Eq. (42)

function defined in Eq. (1)

mass flux in the radial direction due to ordinary diffusion and
external applied field

transport constant defined by Eq. (43)

ratio of the outer radius of the inner tube to the inner radius of
the outer tube

column length of each section

inner radius of outer tube

coordinate axis in the radial direction

expansion coefficient associated with eigenvalue A,

reference temperature

temperatures of cold wall and hot wall, respectively, in the
concentric-tube thermal diffusion column

dimensionless velocity defined in Eq. (6)

velocity distribution

coordinate axis in the axial direction

QTmAY

e B T AR~ A
o3
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Greek Letters

thermal diffusion constant in binary mixtures

defined as —(0p/0T) evaluated at T

degree of separation defined by C, — C,, and evaluated by Egs.
(29) and (41), respectively

defined by T, — T,

position at which the velocity distribution changes sign
dimensionless coordinate defined in Eq. (6)
dimensionless coordinate defined in Eq. (6)

eigenvalue

viscosity of the mixture

density of the mixture

mass flow rate of product at each section

parameter defined in Eq. (36)

parameter defined in Eq. (38) for the enriching section

Do R
'

~

EOADE P3SN

Subscripts

at the bottom of the column
for the enriching section
for the stripping section
at the top of the column

EndER I~
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